444 research outputs found

    Isoscalar ππ,KK,ηη\pi\pi, K\overline{K}, \eta\eta scattering and the σ,f0,f2\sigma, f_0, f_2 mesons from QCD

    Get PDF
    We present the first lattice QCD study of coupled isoscalar ππ,KK,ηη\pi\pi,K\overline{K},\eta\eta SS- and DD-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the quark mass corresponding to mπ391m_\pi\sim391 MeV. In the JP=0+J^P=0^+ sector we find analogues of the experimental σ\sigma and f0(980)f_0(980) states, where the σ\sigma appears as a stable bound-state below ππ\pi\pi threshold, and, similar to what is seen in experiment, the f0(980)f_0(980) manifests itself as a dip in the ππ\pi\pi cross section in the vicinity of the KKK\overline{K} threshold. For JP=2+J^P=2^+ we find two states resembling the f2(1270)f_2(1270) and f2(1525)f_2'(1525), observed as narrow peaks, with the lighter state dominantly decaying to ππ\pi\pi and the heavier state to KKK\overline{K}. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles

    Short Gas Dissipation Timescales: Diskless Stars in Taurus and Chamaeleon I

    Full text link
    We present an Advanced Camera for Surveys/ Solar Blind Channel far-ultraviolet (FUV) study of \h2 gas in 12 weak T Tauri stars in nearby star-forming regions. The sample consists of sources which have no evidence of inner disk dust. Our new FUV spectra show that in addition to the dust, the gas is depleted from the inner disk. This sample is combined with a larger FUV sample of accretors and non-accretors with ages between 1 and 100 Myr, showing that as early as 1--3 Myr, systems both with and without gas are found. Possible mechanisms for depleting gas quickly include viscous evolution, planet formation and photoevaporation by stellar radiation fields. Since these mechanisms alone cannot account for the lack of gas at 1--3 Myr, it is likely that the initial conditions (e.g. initial disk mass or core angular momentum) contribute to the variety of disks observed at any age. We estimate the angular momentum of a cloud needed for most of the mass to fall very close to the central object and compare this to models of the expected distribution of angular momenta. Up to 20% of cloud cores have low enough angular momenta to form disks with the mass close to the star, which would then accrete quickly; this percentage is similar to the fraction of diskless stars in the youngest star forming regions. With our sample, we characterize the chromospheric contribution to the FUV luminosity and find that LFUV/LbolL_{FUV}/L_{bol} saturates at 104.1\sim10^{-4.1}.Comment: 5 pages, 4 figures, Accepted to ApJ

    Isoscalar pi pi, K(K)over-bar, eta eta scattering and the sigma, f(0),f(2) mesons from QCD

    Get PDF
    We present the first lattice QCD study of coupled isoscalar pi pi, K (K) over bar, eta eta S- and D-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the light quark mass corresponding to m(pi) similar to 391 MeV. In the J(P) = 0(+) sector we find analogues of the experimental sigma and f(0)(980) states, where the sigma appears as a stable bound-state below pi pi threshold, and, similar to what is seen in experiment, the f(0)(980) manifests itself as a dip in the pi pi cross section in the vicinity of the K (K) over bar threshold. For J(P) = 2(+) we find two states resembling the f(2)(1270) and f\u27(2)(1525), observed as narrow peaks, with the lighter state dominantly decaying to pi pi and the heavier state to K (K) over bar. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles

    Higher viral load and infectivity increase risk of aerosol transmission for Delta and Omicron variants of SARS-CoV-2.

    Get PDF
    Airborne transmission of SARS-CoV-2 is an important route of infection. For the wildtype (WT) only a small proportion of those infected emitted large quantities of the virus. The currently prevalent variants of concern, Delta (B1.617.2) and Omicron (B.1.1.529), are characterized by higher viral loads and a lower minimal infective dose compared to the WT. We aimed to describe the resulting distribution of airborne viral emissions and to reassess the risk estimates for public settings given the higher viral load and infectivity. We reran the Monte Carlo modelling to estimate viral emissions in the fine aerosol size range using available viral load data. We also updated our tool to simulate indoor airborne transmission of SARS-CoV-2 by including a CO2 calculator and recirculating air cleaning devices. We also assessed the consequences of the lower critical dose on the infection risk in public settings with different protection strategies. Our modelling suggests that a much larger proportion of individuals infected with the new variants are high, very high or super-emitters of airborne viruses: for the WT, one in 1,000 infected was a super-emitter; for Delta one in 30; and for Omicron one in 20 or one in 10, depending on the viral load estimate used. Testing of the effectiveness of protective strategies in view of the lower critical dose suggests that surgical masks are no longer sufficient in most public settings, while correctly fitted FFP2 respirators still provide sufficient protection, except in high aerosol producing situations such as singing or shouting. From an aerosol transmission perspective, the shift towards a larger proportion of very high emitting individuals, together with the strongly reduced critical dose, seem to be two important drivers of the aerosol risk, and are likely contributing to the observed rapid spread of the Delta and Omicron variants of concern. Reducing contacts, always wearing well-fitted FFP2 respirators when indoors, using ventilation and other methods to reduce airborne virus concentrations, and avoiding situations with loud voices seem critical to limiting these latest waves of the COVID-19 pandemic

    Photometric Accretion Signatures Near the Substellar Boundary

    Full text link
    Multi-epoch imaging of the Orion equatorial region by the Sloan Digital Sky Survey has revealed that significant variability in the blue continuum persists into the late-M spectral types, indicating that magnetospheric accretion processes occur below the substellar boundary in the Orion OB1 association. We investigate the strength of the accretion-related continuum veiling by comparing the reddening-invariant colors of the most highly variable stars against those of main sequence M dwarfs and evolutionary models. A gradual decrease in the g band veiling is seen for the cooler and less massive members, as expected for a declining accretion rate with decreasing mass. We also see evidence that the temperature of the accretion shock decreases in the very low mass regime, reflecting a reduction in the energy flux carried by the accretion columns. We find that the near-IR excess attributed to circumstellar disk thermal emission drops rapidly for spectral types later than M4. This is likely due to the decrease in color contrast between the disk and the cooler stellar photosphere. Since accretion, which requires a substantial stellar magnetic field and the presence of a circumstellar disk, is inferred for masses down to 0.05 Msol we surmise that brown dwarfs and low mass stars share a common mode of formation.Comment: 37 pages, 14 figures, accepted by A

    Effects of single- and simultaneous triple-ion-beam irradiation on an oxide dispersion-strengthened Fe12Cr steel

    Get PDF
    Oxide dispersion-strengthened (ODS) steels are main candidates for structural applications in future fusion reactors. Understanding their irradiation-induced behaviour is a key in building optimised components with enhanced radiation resistance. In this work, the stability of an ODS Fe12Cr steel was investigated by transmission electron microscopy after single- (Fe4+) and simultaneous triple-ion-beam irradiation (Fe8+, He+ and H+) at room temperature to doses of 4.4 and 10 dpa. The irradiations were accomplished at the JANNUS-Saclay facility. Results after single-ion-beam irradiation were also compared with those from a reference Fe12Cr steel produced following the same route. Analyses focused on determining the irradiation-induced loop size and density in the ODS and reference materials, investigating the grain boundary microchemistry and studying the evolution of the secondary phases present. These experiments show that the Y-rich nanoparticles present in the ODS steel are quite stable under these irradiation conditions although evolution of larger Cr-rich carbides could be taking place. Loop sizes are smaller for the ODS steel than for the reference material and appear to increase with dose. Cr segregates at some of the grain boundaries, though this segregation also occurs in the absence of irradiation.This investigation was supported by the Ministerio de Ciencia e Innovación (Contract ENE2010-17462), the European Commission through the European Fusion Development Agreement (EFDA), the EPSRC Grant No. EP/H018921/1, the FP7-EU Program under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative-I3) and the Royal Society International Exchanges Scheme 2011/R1 (ref. IE110136)

    Spectroscopy of Brown Dwarf Candidates in the rho Ophiuchi Molecular Core

    Full text link
    We present an analysis of low resolution infrared spectra for 20 brown dwarf candidates in the core of the ρ\rho Ophiuchi molecular cloud. Fifteen of the sources display absorption-line spectra characteristic of late-type stars. By comparing the depths of water vapor absorption bands in our candidate objects with a grid of M dwarf standards, we derive spectral types which are independent of reddening. Optical spectroscopy of one brown dwarf candidate confirms the spectral type derived from the water bands. Combining their spectral types with published near-infrared photometry, effective temperatures and bolometric stellar luminosities are derived enabling us to place our sample on the Hertzsprung-Russell diagram. We compare the positions of the brown dwarf candidates in this diagram with two sets of theoretical models in order to estimate their masses and ages. Considering uncertainties in placing the candidates in the H-R diagram, six objects consistently lie in the brown dwarf regime and another five objects lie in the transition region between stellar and substellar objects. The ages inferred for the sample are consistent with those derived for higher mass association members. Three of the newly identified brown dwarfs display infrared excesses at λ\lambda=2.2 μ\mum suggesting that young brown dwarfs can have active accretion disks. Comparing our mass estimates of the brown dwarf candidates with those derived from photometric data alone suggests that spectroscopy is an essential component of investigations of the mass functions of young clusters.Comment: Astronomical Journal, in press: 25 pages, latex, 5 tables and 6 figures (separate

    Spitzer Space Telescope study of disks in the young σ\sigma Orionis cluster

    Full text link
    We report new Spitzer Space Telescope observations from the IRAC and MIPS instruments of the young (~ 3 Myr) sigma Orionis cluster. We identify 336 stars as members of the cluster using optical and near-infrared color magnitude diagrams. Using the spectral energy distribution (SED) slopes in the IRAC spectral range, we place objects in several classes: non-excess stars, stars with optically thick disks(like classical T Tauri stars), class I (protostellar) candidates, and stars with ``evolved disks''; the last exhibit smaller IRAC excesses than optically thick disk systems. In general, this classification agrees with the location expected in IRAC-MIPS color-color diagrams for these objects. We find that the evolved disk systems are mostly a combination of objects with optically thick but non-flared disks, suggesting grain growth and/or settling, and transition disks, systems in which the inner disk is partially or fully cleared of small dust. In all, we identify 7 transition disk candidates and 3 possible debris disk systems. As in other young stellar populations, the fraction of disks depends on the stellar mass, ranging from ~10% for stars in the Herbig Ae/Be mass range (>2 msun) to ~35% in the T Tauri mass range (1-0.1 msun). We find that the disk fraction does not decrease significantly toward the brown dwarf candidates (<0.1 msun). The IRAC infrared excesses found in stellar clusters and associations with and without central high mass stars are similar, suggesting that external photoevaporation is not very important in many clusters. Finally, we find no correlation between the X-ray luminosity and the disk infrared excess, suggesting that the X-rays are not strongly affected by disk accretion.Comment: 44pages, 17 figures. Sent to Ap

    For which infants with viral bronchiolitis could it be deemed appropriate to use albuterol, at least on a therapeutic trial basis?

    Get PDF
    Although there is increasing evidence showing that infants with viral bronchiolitis exhibit a high degree of heterogeneity, a core uncertainty shared by many clinicians is with regard to understanding which patients are most likely to benefit from bronchodilators such as albuterol. Based on our review, we concluded that older infants with rhinovirus (RV) bronchiolitis, especially those with a nasopharyngeal microbiome dominated by Haemophilus influenzae; those affected during nonpeak months or during non-respiratory syncytial virus (RSV) predominant months; those with wheezing at presentation; those with clinical characteristics such as atopic dermatitis or a family history of asthma in a first-degree relative; and those infants infected with RSV genotypes ON1 and BA, have the greatest likelihood of benefiting from albuterol. Presently, this patient profile could serve as the basis for rational albuterol administration in patients with viral bronchiolitis, at least on a therapeutic trial basis, and it could also be the starting point for future targeted randomized clinical trials (RCTs) on the use of albuterol among a subset of infants with bronchiolitis
    corecore